Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

5-Acetyl-2-amino-6-methyl-4-(1naphthyl)-4*H*-pyran-3-carbonitrile, methyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4*H*-pyran-3-carboxylate and *tert*-butyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4*H*-pyran-3-carboxylate

Svitlana V. Nesterova, David J. Wiedenfeld and Vladimir N. Nesterov*

Department of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701, USA Correspondence e-mail: vnesterov@nmhu.edu

Received 18 May 2004 Accepted 8 June 2004 Online 10 July 2004

Syntheses and X-ray structural investigations have been carried out for the three title compounds, $C_{19}H_{16}N_2O_2$, (III*a*), $C_{19}H_{16}N_2O_3$, (IIIb), and $C_{22}H_{22}N_2O_3$, (IIIc), respectively. In molecules (IIIa) and (IIIc), the heterocyclic ring is practically flat, while in (IIIb) it adopts a flattened-boat conformation. In (IIIb) and (IIIc), the carbonyl group and a double bond of the heterocyclic ring are *anti*, but in (III*a*) they are *syn* and the carbonyl group participates in an intramolecular C-H···O hydrogen bond which forms a six-membered ring. In molecules (IIIa) and (IIIc), the dihedral angles between the naphthalene substituent and the flat heterocyclic ring are 96.4 (3) and 102.6 (3) $^{\circ}$, respectively. In (IIIb), the dihedral angle between the pseudo-axial naphthalene bicycle and the flat part of the pyran ring is $81.6 (3)^\circ$. In the crystal structure of (IIIa), intermolecular $N-H \cdots N$ and $N-H \cdots O$ hydrogen bonds link the molecules into a three-dimensional framework. In (IIIb) and (IIIc), only one H atom of the NH_2 group takes part in an N-H···O hydrogen bond and infinite chains are formed along the *a* axis.

Comment

The present investigation of the title compounds, *viz*. (III*a*), (III*b*) and (III*c*) (see scheme), is a continuation of our work on the synthesis and structural study of heterocyclic compounds, such as 4*H*-pyran derivatives (Sharanina *et al.*, 1986; Klokol *et al.*, 1987; Nesterov & Viltchinskaia, 2001; Shestopalov *et al.*, 2002, 2003; Nesterov *et al.*, 2004), that can be obtained starting from different unsaturated nitriles (Nesterov *et al.*, 2001*a,b*). Some 4*H*-pyran derivatives are potential bioactive compounds, such as calcium antagonists (Suarez *et al.*, 2002).

Syntheses and X-ray structural investigations have been carried out for compounds (III*a*), (III*b*) and (III*c*) (Figs. 1–3), which were synthesized by the reaction of (1-naphthylmethylene)malononitrile, (I) (Nesterov *et al.*, 2001*a*), with a

1,3-diketone or β -ketoesters, (II). Most of the geometric parameters in the molecules (Tables 1, 3 and 5) are very similar to the standard values (Allen *et al.*, 1987), and are very close to our data from analogous compounds (Nesterov &

Figure 1

A view of the molecule of (III*a*), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate the weak intramolecular $C-H\cdots O$ hydrogen bond and the short intramolecular steric $H\cdots H$ interaction.

Viltchinskaia, 2001; Nesterov *et al.*, 2004) and to the literature data cited in previous work.

The X-ray analyses showed that the molecules of all three title compounds have slightly different structures. The pyran ring in (III*a*) and (III*c*) is practically flat [planar to within 0.009 (3) and 0.013 (3) Å, respectively]. However, in (III*b*) it adopts a flattened boat conformation; atoms O1 and C4 are displaced out of the C2/C3/C5/C6 plane [planar to within 0.017 (3) Å] by -0.106 (3) and -0.208 (3) Å, respectively. The bending of the pyran ring of (III*b*) along the lines O1···C4, C2···C6 and C3···C5 is 14.7 (3), 8.8 (3) and 13.8 (3)°, respectively.

In molecules (III*a*) and (III*c*), the dihedral angles between the bulky naphthalene substituent and the pyran ring are

Figure 2

A view of the molecule of (IIIb), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate the weak intramolecular $C-H\cdots O$ hydrogen bond and the short intramolecular steric $H\cdots H$ interaction.

Figure 3

A view of the molecule of (IIIc), showing the atom numbering used. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate the weak intramolecular $C-H\cdots O$ hydrogen bond and the short intramolecular steric $H\cdots H$ interaction.

96.4 (3) and 102.6 (3)°, respectively. In (III*b*), the naphthalene substituent occupies a pseudo-axial position and the dihedral angle it makes with the flat part of the pyran rings is 81.6 (3)°. The mutual orientation of these fragments and the flatness of the heterocyclic rings lead to $H \cdots H$ intramolecular steric interactions: $H4A \cdots H15A = 2.06$ Å in (III*a*), 2.06 Å in (III*b*) and 2.04 Å in (III*c*). These contacts are shorter than the sum of the van der Waals radii of H atoms (Rowland & Taylor, 1996). As mentioned previously by us for related compounds (Nesterov *et al.*, 2004), such steric hindrance causes elongation of the C4–C7 bond lengths to 1.540 (2), 1.536 (3) and 1.530 (3) Å, respectively, in comparison with the neighbouring Csp^3-Csp^2 distances, which are only slightly longer than or equal to the standard value (Allen *et al.*, 1987).

The C=O group has interesting orientational preferences relative to the C5=C6 double bond in the title compounds. In (IIIb) and (IIIc), the groups are *anti* ['*transoid*'; C6-C5-C18-O2 torsion angles of 176.9 (2) and -154.6 (3)°, respectively]. However, in (IIIa) they are *syn* ['*cisoid*'; C6-C5-C18-O2 torsion angle of 34.9 (3)°]. In the latter case, a short intramolecular contact (O2···H17A = 2.32 Å) is present which connects the atoms into a six-membered ring. According to literature data (Desiraju & Steiner, 1999), this contact can be considered to be a weak hydrogen bond, with

Figure 4

A projection of the crystal packing of (III*a*) along the *a* axis. Dashed lines indicate intermolecular $N-H \cdots N$ and $N-H \cdots O$ hydrogen bonds.

Figure 5

A projection of the crystal packing of (IIIb) along the c axis. Dashed lines indicate intermolecular $N-H\cdots O$ hydrogen bonds.

Figure 6

A projection of the crystal packing of (IIIc) along the b axis. Dashed lines indicate intermolecular N-H···O hydrogen bonds.

parameters $C17 \cdot \cdot \cdot O2 = 2.894$ (3) Å, C17 - H17A = 0.96 Å and $C17-H17A\cdots O2 = 118^{\circ}$. As seen in Figs. 2 and 3, in (IIIb) and (IIIc), the O3 atoms of the ester groups have favourable orientations for the formation of short intramolecular contacts with the CH₃ groups of the heterocyclic ring. The O3 $\cdot \cdot \cdot$ H17A distances are 2.15 and 2.26 Å, respectively. These contacts can also be considered to be weak hydrogen bonds, with parameters $C17 \cdots O3 = 2.792$ (3) Å, C17 - H17A = 0.96 Å and C17-H17A···O3 = 123° in (IIIb), and C17···O3 = 2.837 (3) Å, C17-H17A = 0.96 Å and C17-H17A...O3 = 118° in (IIIc). In each case, the hydrogen bond connects the atoms into a six-membered ring.

Similar to what we observed in related compounds (Nesterov & Viltchinskaia, 2001; Nesterov et al., 2004), in all three title compounds there is conjugation between the donor NH₂ and the acceptor CN groups via the C2=C3 double bond.

In the crystal structure of (IIIa), the active H atoms of the NH_2 group participate in intermolecular $N-H \cdots N$ and N-H...O hydrogen bonds, linking the molecules into a threedimensional framework (Fig. 4 and Table 2). However, in the crystals of (IIIb) and (IIIc), only one H atom of the NH₂ group is involved in an $N-H \cdots O$ hydrogen bond, forming infinite chains along the *a* axis (Figs. 5 and 6, and Tables 4 and 6).

Analysis of the crystal packing of all three compounds shows that there are intermolecular steric $C \cdots C$ contacts between atoms of the naphthalene substituents of neighbouring molecules which are less than the sum of the van der Waals radii of C (Rowland & Taylor, 1996). Such contacts probably play a role in the orientation of bulky substituents in the molecule and can be considered as $\pi - \pi$ interactions. The remaining geometrical parameters in the title compounds have standard values (Allen et al., 1987).

Experimental

The title compounds were obtained by the reaction of (1-naphthylmethylene)malononitrile, (I) (Nesterov et al., 2001a), with acetylacetone, (IIa), methyl acetylacetate, (IIb), and tert-butyl acetylacetate, (IIc), respectively, according to the literature procedure of Nesterov & Viltchinskaia (2001) and Nesterov et al. (2004). The precipitates were isolated and recrystallized from acetonitrile [m.p. 468 K and yield 75% for (IIIa); m.p. 453 K and yield 79% for (IIIb); m.p. 479 K and yield 85% for (IIIc)]. All three compounds were characterized by ¹H and ¹³C NMR spectroscopy; these data are available in the archived CIF. The crystals of all three compounds were grown by slow isothermic evaporation of acetonitrile solutions.

Compound (IIIa)

Crystal data

$C_{19}H_{16}N_2O_2$	Mo $K\alpha$ radiation
$M_r = 304.34$	Cell parameters from 24
Monoclinic, $P2_1/n$	reflections
$a = 7.8630 (16) \text{\AA}$	$\theta = 11-12^{\circ}$
b = 8.5960(17) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 23.227 (5) Å	T = 295 (2) K
$\beta = 96.64(3)^{\circ}$	Prism, colourless
V = 1559.4 (6) Å ³	$0.50 \times 0.40 \times 0.30 \text{ mm}$
Z = 4	
$D_x = 1.296 \text{ Mg m}^{-3}$	
Data collection	

Enraf-Nonius CAD-4 diffractometer $\theta/2\theta$ scans 3267 measured reflections 3035 independent reflections 2151 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.096$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.5P]
$wR(F^2) = 0.123$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
3035 reflections	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
210 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 $\theta_{\rm max} = 26.0^\circ$

 $k = 0 \rightarrow 10$

 $l = -28 \rightarrow 28$

3 standard reflections

every 97 reflections

intensity decay: 3%

 $h = 0 \rightarrow 9$

Table 1

Selected geometric parameters (Å, $^{\circ}$) for (III*a*).

O2-C18	1.217 (2)	C3-C4	1.521 (2)
N1-C2	1.349 (2)	C4-C5	1.513 (2)
N2-C1	1.143 (2)	C4-C7	1.540 (2)
C1-C3	1.408 (3)	C5-C6	1.325 (3)
C2-C3	1.348 (3)	C5-C18	1.497 (3)
N1-C2-C3	127.98 (17)	C5-C4-C7	111.19 (14)
O1-C2-C3	122.20 (16)	C3-C4-C7	110.62 (14)
C2-C3-C1	118.38 (17)	C6-C5-C4	123.05 (16)
C2-C3-C4	122.85 (16)	C5-C6-C17	129.78 (19)
C5-C4-C3	109.40 (14)		
C2-C3-C4-C7	121.95 (18)	C6-C5-C18-C19	-143.94 (19)
C3-C4-C7-C8 C6-C5-C18-O2	-69.8 (2) 34.9 (3)	C4-C5-C18-C19	33.3 (2)

Table 2

Hydrogen-bonding geometry (Å, °) for (IIIa).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O2^{i}$	0.86	2.54	3.374 (2)	165
$N1 - H1B \cdot \cdot \cdot N2^{ii}$	0.86	2.18	3.016 (2)	166

Symmetry codes: (i) $\frac{3}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) 1 - x, -y, -z.

Mo $K\alpha$ radiation

reflections

 $\mu = 0.09~\mathrm{mm}^{-1}$

T = 295 (2) K

 $\theta_{\rm max} = 28.0^{\circ}$

 $\begin{array}{l} h=0\rightarrow 10\\ k=-13\rightarrow 13 \end{array}$

 $l = -14 \rightarrow 14$

+ 0.1P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

3 standard reflections

every 97 reflections

intensity decay: 3%

 $w = 1/[\sigma^2(F_o^2) + (0.08P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Prism, colourless

 $0.45 \times 0.40 \times 0.25 \text{ mm}$

 $\theta = 11 - 12^{\circ}$

Cell parameters from 24

Compound (IIIb)

Crystal data

C₁₉H₁₆N₂O₃ $M_r = 320.34$ Triclinic, $P\overline{1}$ a = 8.3150 (17) Å b = 10.283 (2) Å c = 10.793 (2) Å $\alpha = 112.38$ (3)° $\beta = 96.66$ (3)° $\gamma = 103.83$ (3)° V = 806.3 (4) Å³ Z = 2 $D_x = 1.319$ Mg m⁻³

Data collection

Enraf–Nonius CAD-4 diffractometer $\theta/2\theta$ scans 4108 measured reflections 3841 independent reflections 1923 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.172$ S = 1.02 3841 reflections 219 parameters H-atom parameters constrained

Table 3

Selected geometric parameters (Å, °) for (IIIb).

O2-C18	1.207 (3)	C3-C4	1.512 (3)
N1-C2	1.341 (3)	C4-C5	1.510 (3)
N2-C1	1.138 (3)	C4-C7	1.536 (3)
C1-C3	1.414 (3)	C5-C6	1.337 (3)
C2-C3	1.345 (3)	C5-C18	1.468 (3)
N4 C2 C2	127.5 (2)	C5 C4 C3	100 10 (17)
NI-C2-C3	127.5 (2)	65-04-03	109.19 (17)
$C_3 - C_2 - O_1$	122.2 (2)	CS-C4-C/	111.85 (18)
C2-C3-C1	117.9 (2)	C3-C4-C7	111.26 (18)
C2-C3-C4	121.8 (2)	C6-C5-C4	122.8 (2)
C1-C3-C4	120.21 (19)	C5-C6-C17	131.2 (2)
C2-C3-C4-C7	-106.0 (2)	C6-C5-C18-O2	176.9 (2)
C3-C4-C7-C8 C19-O3-C18-C5	82.8 (2) 178.3 (2)	C6-C5-C18-O3	-1.8 (3)

Compound (IIIc)

Crystal data

$C_{22}H_{22}N_2O_3$	Mo $K\alpha$ radiation
$M_r = 362.42$	Cell parameters from 24
Triclinic, $P\overline{1}$	reflections
a = 8.4940 (17) Å	$\theta = 11-12^{\circ}$
b = 10.938 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.844 (2) Å	T = 295 (2) K
$\alpha = 104.69 \ (3)^{\circ}$	Prism, colourless
$\beta = 109.84 (3)^{\circ}$	$0.50 \times 0.40 \times 0.30 \text{ mm}$
$\gamma = 102.30 \ (3)^{\circ}$	
$V = 945.6 (5) \text{ Å}^3$	
Z = 2	
$D_{\rm r} = 1.273 {\rm Mg} {\rm m}^{-3}$	

Table 4

Hydrogen-bonding geometry (Å, °) for (IIIb).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1B \cdots O2^i$	0.86	2.14	2.919 (3)	150

Symmetry code: (i) 1 + x, y, z.

Data collection

Enraf–Nonius CAD-4	$\theta_{\rm max} = 27.0^{\circ}$
diffractometer	$h = 0 \rightarrow 10$
$\theta/2\theta$ scans	$k = -13 \rightarrow 13$
4336 measured reflections	$l = -15 \rightarrow 14$
4054 independent reflections	3 standard reflections
2361 reflections with $I > 2\sigma(I)$	every 97 reflections
$R_{\rm int} = 0.135$	intensity decay: 3%
Refinement	
_	

$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
+ 0.2P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ \AA}^{-3}$

Table 5

Selected geometric parameters (Å, °) for (IIIc).

O2-C18	1.210 (3)	C3-C4	1.521 (3)
N1-C2	1.342 (3)	C4-C5	1.505 (3)
N2-C1	1.144 (3)	C4-C7	1.530 (3)
C1-C3	1.410 (3)	C5-C6	1.329 (3)
C2-C3	1.344 (3)	C5-C18	1.489 (3)
N1 - C2 - C3	127.7 (2)	C5-C4-C3	109.68 (18)
C3-C2-O1	123.0 (2)	C5-C4-C7	110.79 (18)
C2-C3-C1	118.1 (2)	C3-C4-C7	111.01 (18)
C2-C3-C4	122.4 (2)	C6-C5-C4	123.5 (2)
C1-C3-C4	119.5 (2)	C5-C6-C17	131.3 (2)
C2-C3-C4-C7	120.0 (2)	C6-C5-C18-O2	-154.6 (3)
C3-C4-C7-C8	-82.2 (3)	C6-C5-C18-O3	28.3 (3)

Table 6	
Hydrogen-bonding geometry	(Å, $^{\circ}$) for (IIIc).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1 B ···O2 ⁱ	0.86	2.22	3.071 (3)	171

Symmetry code: (i) x - 1, y, z.

For all three title compounds, H atoms were placed in geometrically calculated positions and refined using a riding model, with C-H distances of 0.93 Å for aromatic H, 0.96 Å for CH₃, and 0.98 Å for CH, and N-H distances of 0.86 Å for NH₂ groups. In the cases of (III*b*) and (III*c*), the quality of the crystals was not very good and this is probably a reason for the high R_{int} values. Another reason is likely to be the high thermal motion of the terminal C atoms, especially in (III*c*).

For all three compounds, data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduc-

tion: *SHELXTL-Plus* (Sheldrick, 1994); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus*; software used to prepare material for publication: *SHELXL*97.

We thank the NIH (grant No. S06 GM008066-31 to DJW) for generous financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1162). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

- Klokol, G. V., Sharanina, L. G., Nesterov, V. N., Shklover, V. E., Sharanin, Yu. A. & Struchkov, Yu. T. (1987). *Zh. Org. Khim.* 23, 412–421. (In Russian.)
- Nesterov, V. N., Kuleshova, L. N. & Antipin, M. Yu. (2001a). Crystallogr. Rep. 46, 402–410.
- Nesterov, V. N., Kuleshova, L. N. & Antipin, M. Yu. (2001b). Crystallogr. Rep. 46, 959–965.
- Nesterov, V. N. & Viltchinskaia, E. A. (2001). Acta Cryst. C57, 616-618.
- Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, 0334–0337.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Sharanina, L. G., Nesterov, V. N., Klokol, G. V., Rodinovskaya, L. A., Shklover, V. E., Sharanin, Yu. A., Struchkov, Yu. T. & Promonenkov, V. K. (1986). *Zh. Org. Khim.* 22, 1185–1191. (In Russian.)
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). *SHELXTL-Plus*. PC Version 5.02. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shestopalov, A. M., Emelianova, Yu. M. & Nesterov, V. N. (2002). *Russ. Chem. Bull.* **51**, 2238–2243.
- Shestopalov, A. M., Emelianova, Yu. M. & Nesterov, V. N. (2003). *Russ. Chem. Bull.* **52**, 1164–1171.
- Suarez, M., Salfran, E., Verdecia, Y., Ochoa, E., Alba, L., Martin, N., Martinez, R., Quinteiro, M., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2002). *Tetrahedron*, **58**, 953–960.